目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的主要问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域相当有有挑战性的问题。随着深度学习的不断发展,目标检测的应用愈加广,现已被应用于农业、交通和医学等众多领域。与基于特征的传统手工方法相比,基于深度学习的目标检测方法可以学习低级和高级图像特征,有更好的检测精度和泛化能力SpeedDP深度学习算法开发平台。成都智慧工地AI智能
在智慧林河长制的建设中,无人机吊舱很重要,无人机吊舱可以内置图像处理传感器,进行高空目标识别、检测、锁定跟踪等功能。慧视光电开发的VIZ-100T三轴三光目标定位吊舱集成了10倍光学变倍可见光相机,640×512高分辨率红外相机,测程1.2km半导体激光测距机,以及三轴高稳定精度平台框架,能够实现昼夜工作,可远距离采集林、河图像,对可疑点位进行定位,然后实时输出1080P全高清可见光、红外视频。通过搭载慧视光电的无人机吊舱,能够很好地辅助有关单位进行林河维护。成都智慧监狱AI智能分析软件人工智能和机器学习为建筑行业转型提供了巨大潜力。
凤凰卫视在“数聚未来——凤凰大模型数据研讨沙龙”上正式推出“凤凰智媒AI数据业务”,发布首批“中文访谈对话数据集”和“正向价值对齐数据集”,还将推出以数据为中心的一站式AI训练平台,计划于近期开放内测。凤凰卫视执行副总裁兼运营总裁李奇在致辞中表示,凤凰卫视作为一个立足香港、背靠内地、面向全球发展的国际媒体,也将是人工智能时代的积极参与者,期望发挥凤凰的媒体平台优势,为产业界建立一个共建共享的数据平台,共同推进人工智能的快速发展。
激光除草是通过激光照射杂草,使草叶内部细胞脱水破裂死亡的物理靶向除草方法。哈工大机器人实验室与华工科技合作研发的全天候智能激光除草机器人集成深度学习的人工智能技术,AI智能识别杂草,十分高效;同时针对性开发先进的多目标靶点定位及动态时延误差补偿算法,不仅能够准确高效识别杂草和高精度定位目标分生组织,同时不损伤作物、不污染土壤、不耗费人力,而且适应性强,生产效率高,促进农业经济高质量发展。激光除草模式中AI智能识别是很关键的一环,需要机器人正确识别杂草,而这基于AI的深度学习、目标识别检测等功能,通过不断的训练学习,AI能够精细识别什么是杂草什么是作物。目前,市面上比较好用的AI深度学习平台众多,例如成都慧视推出的SpeedDP深度学习算法开发平台,就能够通过大量的数据部署,再经过长时间的训练,就能够实现跟人眼一样的目标识别能力。AI算法能够帮助进行空中哨兵建设。
机器人是AI落地应用的一个很重要载体,AI赋能的机器人能够在安防巡检、自动化作业、应急救援等领域发挥重要作用。在电力巡检当中,传统的模式需要人工一步一步走出来,面对假设在各种环境中的输电线,这种模式弊端重重,费时费力。而常年经受风吹雨晒的输电线,在使用久了之后,难免会出现电力设备损坏缺失等问题,AI赋能下的机器人的出现,为这项行业的工作效率的提升提供了新思路。巡检机器人内置可见光和红外摄像头,能够实现昼夜巡检,然后再内置高性能的AI图像处理板,就能够运用AI识别、多机协同、数字孪生、巡检监控等技术,实现自动巡视、缺陷和表计自动识别和告警、巡视报表自动生成和发送等功能,实现场站式巡检场景的全息感知和全域决策辅助。用SpeedDP进行图像标注可以省下许多人力成本。成都智慧监狱AI智能智慧眼
采用SpeedDP一劳永逸。成都智慧工地AI智能
我国家的机动车数量庞大,但是停车位的建设却没有很好的跟上节奏,这也就导致许多车在出行时找不到停车位,车主也就不得不临时将车停放在路边。随着路边停放车辆的不断增多,原本宽敞的道路也就变得狭窄,严重时甚至会堵得水泄不通。此外,一些大车由于阻挡视野,还容易造成“鬼探头”等事故。通常情况下,交管部门会利用路边的抓拍设备进行违停抓拍或者巡逻车进行巡逻,但是从实际效果来看,作用并不明显。于是,无人机被派上用场。成都智慧工地AI智能
文章来源地址: http://dzyqj.chanpin818.com/chuanganqisr/sjtxcgq/deta_22908740.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。