AI智能化检测是打造领域智慧建设的一大举措。通过在摄像头中植入视觉处理AI图像处理板,定制AI检测算法,就能够实现对物体的质量检测。在智能检测领域,图像处理板的性能和算法的精度则是影响检测效果的关键所在。不同行业的作业环境不同,对于图像处理板的性能需求也就不同。因此,需要根据实际情况选择合适的AI图像处理板。像工业生产中的质量检测,由于工业仪器的精密复杂,就需要高性能的AI图像处理板,通过大算力实现快速数据处理。成都慧视开发Viztra-HE030图像处理板就十分合适,工业级芯片RK3588的加持下,至高输出6.0TOPS的算力,足以满足工业检测需求。成都慧视开发的Viztra-LE026图像处理板非常适合无人机领域。成都小体积图像识别模块识别
虽然现在各种公共交通已十分便捷,但是仍然存在许多无证、无资质的车辆,这些车辆无视交通法规,所以超速超载,俨然成为公路安全一大隐患。例如在车站出入口,经常会有很多人进行拉客,虽然说是坐满就走,但是为了利益比较大化,超员那是常有的事。再比如暑期来临,各种培训班、托儿所成批出现,也由此滋生了许多“黑校车”,为了尽可能的节约成本,常常让所有学生挤在一辆车内,严重危及孩子安全。要想避免事故的发生,则需要警民合作,路人积极提供线索,而管理部分则迅速行动,对车辆进行追踪拦截。成都图形图像识别模块软件利用RK3399Pro开发而成的Viztra-ME025图像处理板。
随着相关技术的迅猛发展,城市智慧治安防控模式也在不断革新,主要以无人巡逻车、无人机为主要载体。无人巡逻车主要承担城区巡逻防控、远程喊话、安防宣传、视频巡控等工作任务,这种无人机不需要太大的体积通过搭载AI图像处理板等传感器,通过AI智能算法和图像处理板的共同作用实现智能避障,达到自主巡逻、AI智慧识别的目的。像成都慧视开发的高性能AI图像处理板Viztra-HE030,采用先进架构,8核处理器,算力能够达到6.0TOPS,能够实时检测无人巡逻车视野范围内的物体,辅助进行信息收集、避障等操作。
通过在无人机光电吊舱中植入高性能的AI图像处理板,这些板卡在目标跟踪算法的赋能下,就能够对目标车辆进行锁定跟踪,即便是车辆短时间内收到视野阻挡,在车辆后续出现时,也能够立即锁定。这就是成都慧视开发的Viztra-HE030图像处理板。该板卡采用了瑞芯微高性能芯片RK3588,八核处理器能够输出6.0TOPS算力,可实时对目标进行识别或者人为的的锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。利用吊舱和图像处理板的合作,实现高效追踪查处“不法车辆”,能够有效减少事故的发生,打造安全出行。高性能的图像识别处理板RK3399Pro。
无人机要进行AI识别,需要的是模拟人眼,对需要识别的物体进行图像处理,AI通过大量的模型训练,能够具备对物体进行特征提取进行分析的能力,从而实现整个流程的自动化,达到无人机智能识别的目的。但不同的事,无人机的目标识别和传统的摄像头还是又不晓得区别,传统的摄像头是静态的,而无人机搭载如光电吊舱飞在空中时,需要处理实时动态的信息,这就是对目标的锁定跟踪能力。这样的结果可以采用将AI图像跟踪板植入吊舱的方法来实现。慧视RK3399PRO图像跟踪板支持图像识别模块识别目标(人、车)。成都自主检测图像识别模块分析
用于安防监控及状态监测的摄像头数量的飞速发展。成都小体积图像识别模块识别
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被***用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到端目标检测能力,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。据悉,YOLOv10在各种模型规模上都实现了SOTA性能和效率。例如,YOLOv10-S在COCO上的类似AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOP大幅减少。与YOLOv9-C相比,在性能相同的情况下,YOLOv10-B的延迟减少了46%,参数减少了25%。成都小体积图像识别模块识别
文章来源地址: http://dzyqj.chanpin818.com/chuanganqisr/sjtxcgq/deta_24287146.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。