磁体自身电阻较小,加在磁体两端的高电压在磁体中产生大电流,产生强磁场。但由于磁体电阻不可能为零,在通过瞬间的大电流时,磁体本身会瞬间发热产生高温,其自身的电阻也会随着温度的升高进一步增大,增大的电阻在大电流通过时更进一步发热。如此,为了真正让磁体通过脉冲式高稳定度大电流,并不能简单给磁体配置一个脉冲式高稳定度的电压源,而是需要一个脉冲式、纹波小、可控、快速反应的电源。强磁场磁体的电源不用于其它装置的供电电源,在需要产生磁场的时候,电能以很快的速度释放至磁体产生强磁场。由于瞬时功率很大,若从电网中取电必然会对电网造成冲击。故而需要电源系统在较长时间内储存大量的能量,然后以此储能电源系统作为缓冲来为实验提供大功率的瞬时电能。而折射两光波之间的相位差与外施电压成正比。南京粒子加速器电压传感器厂家现货

采用双电源供电,为M57962芯片搭建比较简单的外围电路后,正负驱动电压为+15V和-9V,可以使IGBT可靠通断。并且M57962内部集成了短路和过电流保护,内部保护电路监测IGBT的饱和压降来判断是否过流,当出现短路或过流时,M57962将***驱动信号实施对IGBT的关断,同时输出故障信号。如图为驱动芯片M57962的驱动效果,将输入的高电平为5V、低电平为0V的电压信号放大为高电平为15V,低电平为-9V的驱动信号。-9V的低电平确保了IGBT可靠关断。苏州电压传感器厂家现货将电流限值在毫安级,此电流经过多匝绕组之后。

在产生移相脉波时,计时器的计时都有一个固定的时基,计时器以时基为参考点开始计数,当比较寄存器中的值和设定值相等就会产生一个比较中断。由此机理,移相角的改变有两种方法:1)不断改变时基;2)不断更新比较值。DSP比较寄存器处于增减计数模式,一般时基是固定的。由于增减计数模式中每一个周期都会产生一个周期中断和下溢中断,于是我们可以利用这两个中断将设定值重置来实现另外一对PWM波的移相。超前桥臂上一对互补PWM波由比较单元1产生,对应的比较寄存器为T1CMPR,即为比较寄存器1的设定值,计数寄存器为T1CNT。滞后桥臂上一对互补的PWM波由比较单元2产生,对应的比较寄存器为T2CMPR,即为比较寄存器2的设定值,为了保证参考坐标的一致性,比较单元2和比较单元1共用同一个计数寄存器。
驱动电路是连接逆变桥开关管和控制电路的桥梁,控制板输出的驱动信号是功率很小的PWM波,不足以驱动开关管使之正常的开通关断。并且在工程中,为了保证开关管(IGBT)迅速关断,需要在关断器件给开关管提供负的驱动电压,而这些都需要驱动电路来满足。除此外,驱动电路还负责控制电路和主电路的隔离,即弱电模块和强电部分的电气隔离[26]。驱动电路也是整个补偿电源设计的关键,驱动电路设计的好坏会影响到整个电路工作的安全以及开关管的开关速度。具体对驱动的电路有如下要求:1)提供适当的正反向电压,是IGBT能够可靠的开通关断;2)驱动电路工作频率要能够满足工程需要。3)驱动电路的功率足够,保证IGBT工作在过载工况下不会出现饱和而损坏。4)有较强的电气隔离和抗干扰能力。分为电阻分压式和电容分压式,将初级电压直接转化为测量仪表可用的低压信号。

整个控制板由五个模块构成:电源模块、采样及A/D转换模块、DSP控制模块、PWM输出模块、驱动电路模块。数字控制电路中任何一个芯片的工作都离不开电源,其中DSP芯片和A/D芯片对电源的要求很高,电源发生过电压、欠电压、功率不够或电压波动等都可能导致芯片不能正常工作甚至损坏。对于任何一个PCB板,电源模块设计的好坏都直接影响着整个控制板工作的稳定。在设计电源模块的时候,不仅要为整个控制板提供其所需要的所有幅值的电压,还要保证每一个幅值的电压值稳定、纹波小,必要时须电气隔离,并且电源模块须功率足够。通常,在串联电路中,高阻抗的元件上会产生高电压。上海大量程电压传感器案例
它可以测量交流电平和/或直流电压电平。南京粒子加速器电压传感器厂家现货
在电路的控制环节,设计了硬件控制电路并编写了相应的控制程序。硬件电路基于DSP控制芯片,主要由电源模块、采样及A/D转换模块、DSP控制模块、PWM输出模块、驱动电路模块构成。在程序方面,本文着重对移相脉波产生的方式、PID反馈控制的策略进行了研究,同时也完成了信号采集、模数转换、保护控制等模块的程序编写和调试。然后按照补偿电源的参数要 求,选择了基于 TMS320F2812(DSP)的移相全桥变换电路作为补偿电源的拓扑结 构。讨 论了长脉冲高稳定磁场的研究意义、发展现状和现今的难点,基于存在的问题提出 了对强磁场电源系统的优化, 提出了补偿电源的方案。南京粒子加速器电压传感器厂家现货
文章来源地址: http://dzyqj.chanpin818.com/chuanganqisr/hecgq/deta_26607918.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。